
RICE UNIVERSITY

Combining Sampling and Optimizing in Robotic

Path Planning

by

Bryce Willey

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Dr. Lydia E. Kavraki, Chair
Noah Harding Professor of Computer
Science

Dr. Ronald N. Goldman
Professor of Computer Science

Dr. Swarat Chaudhuri
Associate Professor of Computer Science

Dr. Mark Moll
Senior Research Scientist

Houston, Texas

August, 2018

ABSTRACT

Combining Sampling and Optimizing in Robotic Path Planning

by

Bryce Willey

Robotic path planning is a critical problem in autonomous robotics. Two com-

mon approaches to robotic path planning are sampling-based motion planners and

continuous optimization methods. Sampling-based motion planners explore the

search space effectively, but either return low quality paths or take a long time to ini-

tially find a path. Continuous optimization methods quickly find high-quality paths,

but often return paths in collision with obstacles. This thesis combines sampling-

based and continuous optimization techniques in order to improve the performance

of these planning approaches. This thesis shows that the advantages and disad-

vantages of these approaches are complementary and proposes combining them into

a pipeline. The proposed pipeline results in better path quality than either ap-

proach alone, providing a robust, efficient, and high-quality general path planning

solution. The use of collision checking techniques introduced by continuous opti-

mization methods in sampling-based planners is also analyzed and approximation

error rates and timing results are provided.

Acknowledgments

I would like to thank Dr. Lydia Kavraki and Dr. Mark Moll for all of their efforts

over the past two years. They’ve always known which ideas and approaches to

pursue, and which to save for later. Their assistance have been invaluable to this

work, and I couldn’t have asked for better advisors and mentors.

In addition I would like to thank the members of my thesis committee for con-

tributing their time to provide their valuable feedback.

I would also like to thank all of the the members of the KavrakiLab for their

assistance and inspiration. I especially would like to thank Zak, Keliang, Constanti-

nos, Cannon, Juan David, Didier, Dinler, Yue, Andrew, Thomas, Eleni, Sarah, and

Jayvee for all of the ideas exchanged, criticism received, conversations had, and

lunches shared.

I would like to thank Mustafa Mukadam for assistance in using the GPMP2

package (GTRLL, 2016b).

Finally I would like to thank my friends and family who have supported me

through all of my studies, especially Kathlyn, Elena, Jackie, Sheri, Barry, and Han-

nah. Your words of encouragement have helped me through many difficult times.

Work on this thesis has been supported in part by NSF IIS-1317849, NSF IIS-

1718478, and Rice University Funds.

Contents

1 Introduction 1

1.1 The Importance of Robotics . 1

1.2 Motion Planning and Path Planning 2

1.2.1 High Dimensional Path Planning 3

1.3 Contribution . 4

1.4 Organization . 4

2 Literature Review 6

2.1 Robotic Motion . 6

2.1.1 Configurations and the C-Space 6

2.1.2 The Path Planning Problem 8

2.1.3 Cost and the Optimal Path Planning Problem 9

2.2 Sampling-based Motion Planners . 10

2.2.1 Feasible Planners . 11

2.2.2 Cost-aware Planners . 12

2.3 Continuous Optimization Methods 14

2.3.1 CHOMP . 15

2.3.2 STOMP . 16

2.3.3 TrajOpt . 16

2.3.4 GPMP2 . 17

2.3.5 Review . 18

2.4 Combinations of Sampling and Optimization 19

v

2.4.1 Bottom-up: Using optimization as a local planner 19

2.4.2 Top-down: Using optimization as a post-processor 20

2.5 Discussion . 21

3 The Planning Pipeline: Methods 22

3.1 Candidate Generators . 22

3.2 Candidate Optimizers . 25

3.3 Discussion . 26

4 The Planning Pipeline: Results 27

4.1 Experiments and Implementation . 27

4.2 Results and Analysis . 29

4.3 Discussion . 38

5 Collision Detectors from Optimization Methods 40

5.1 Collision Detection Background . 41

5.2 Spherical Robot Approximations and Signed Distance Fields 43

5.2.1 The Method . 43

5.2.2 Results . 44

5.3 Swept Volume Approximation via Convex Hulls 46

5.3.1 The Method . 46

5.3.2 Results . 49

5.4 Discussion . 51

6 Conclusion 53

A Culling Sampling-based Planning Results 56

vi

List of Figures

1.1 The Barrett WAM and Fetch robots 2

3.1 The Planning Pipeline Diagram . 23

3.2 A Candidate Generation Computation Diagram 23

4.1 Planning scenes used when evaluating the planning pipeline 30

4.2 Results from the column scene . 32

4.3 Results from the shelf scene . 34

4.4 Results from the mesh scene . 36

4.5 Results from the lab scene . 37

5.1 A Visualization of Spherical Approximation 44

5.2 Worst Case Error in Discrete and Swept Volume Approximation

Collision Detection . 48

5.3 Benchmark planning scene for swept volume approximation 49

5.4 Valid Segment Fraction vs Planning Time 50

5.5 Valid Segment Fraction vs Correctness 50

A.1 Costs of sampling-based planners with and without simplification . . 57

vii

List of Tables

5.1 Table Comparing FCL with Spherical Approximation Queries 45

A.1 Average Dynamic Time Warping Score of Between Paths from

Sampling Planners . 57

1

Chapter 1

Introduction

1.1 The Importance of Robotics

Robots were once only a common sight in factories, running repeated, precomputed

motions, separated from human coworkers. Recently, robots are becoming more

prevalent in environments where they have little predefined knowledge. The motions

these robots execute are expected to be efficient and respectful of human coworkers,

that is, of high quality. The robots are also expected to find these motions quickly

and reliably. Teleoperation can be used to control robots in such changing environ-

ments. However, teleoperation is not always viable, either due to the inability to

send commands to the robot, the inefficiency or impreciseness of having a human

operator, or the inability to scale to a large number of robots efficiently. In these

cases, the robot must control itself autonomously.

Autonomous motion in a robot consists of three stages, sensing, planning, and

acting, repeatedly looped throughout the robot’s operation. Sensing perceives the

robot’s environment, including humans and obstacles. Planning takes that perceived

information and knowledge of the goal to generate a series of actions that the robot

can take to achieve that goal. Acting executes these actions on the robot itself. This

research focuses on the planning stage, and plans at the level of individual motions,

i.e., moving the robot from one place to another. This is known as motion planning.

2

(a) (b)

Figure 1.1: (1.1a) The Barrett WAM robot, a 7 DOF arm. (1.1b) The Fetch robot, which has a 7
DOF arm, 1 DOF in the torso, and a mobile base.

1.2 Motion Planning and Path Planning

Motion planning is the process of finding a motion that moves the robot from a start

position to a goal position and does not cause the robot to collide with itself or its

environment. This collision-free motion is known as a feasible motion. Usually the

start position is the robot’s current position, and the goal position is either a single

position or anywhere in a defined region. Motion planning occurs in many kinds of

robots, from holonomic bases like the Fetch robot (Figure 1.1b), to serial chain ma-

nipulators like the Barrett WAM (Figure 1.1a), and is a critical part of autonomous

robot control. Navigating a house with variably placed furniture, reaching into a

cluttered cabinet, and moving a vase of flowers from the sink to the counter are all

examples of complex motions that a robot is expected to plan and execute.

This research targets robots meant for quasi-static manipulation tasks, or tasks

focused on handling an object where at any point in the motion, the robot and the

object being manipulated are stable. Manipulation tasks often involve robots with

high number of degrees of freedom, also referred to as high dimensional (see Section

3

2.1.1).

This thesis focuses on a sub-problem of the motion planning problem known as

the path planning problem (see Section 2.1.1). The path planning problem is diffi-

cult, belonging to the PSPACE complexity class (Schwartz and Sharir, 1983; Canny,

1987). Thus algorithms that solve the path planning problem exactly are infeasible

in practice. However, many path planners make concessions on completeness in

order to improve practical runtime.

1.2.1 High Dimensional Path Planning

Two classes of path planners for high dimensional problems include sampling-based

planners and continuous optimization methods.

Sampling-based planners, like the probabilistic roadmap planner (PRM) (Kavraki

et al., 1996), the expansive-space trees planner (EST) (Hsu et al., 1997), and the

rapidly exploring random tree planner (RRT) (LaValle and Kuffner, 2001), use ran-

dom sampling of the configuration space to build discrete graphs that lie entirely

in the free space and traverse these graphs to find a feasible path. These methods

are probabilistically complete, eventually finding a solution if one exists. However,

sampling-based planners that find a solution quickly often find a poor quality so-

lution. Path simplifiers (Geraerts and Overmars, 2007; Raveh et al., 2011) that

iteratively improve small sections of a feasible solution exist, but do not perform

well with many specifications of quality. Vice versa, asymptotically optimal planners

(Karaman and Frazzoli, 2011; Gammell, 2016), which find a solution that approaches

the globally optimal solution, take longer to incrementally refine the best solution,

improving the solution one sample at a time.

Another class of approaches, continuous optimization methods, includes methods

like CHOMP (Zucker et al., 2013) and TrajOpt (Schulman et al., 2014). These

methods start with any initial path, by default a straight line, and use continuous

optimization to improve the entire path in a series of small but rapid iterations.

4

Each iteration improves the path’s quality and eventually makes the path feasible.

Continuous optimization is both fast and finds high quality solutions. However,

most continuous optimization methods sometimes fail to find feasible paths, due to

being stuck in infeasible local minima.

Currently, users of robotic motion planners have to choose between the tradeoffs

of different path planners to use with their robot. This choice is complex and

depends on the kinematics of the robot and the type of planning problems the robot

is expected to solve.

1.3 Contribution

This thesis describes efforts to combine sampling-based planners and continuous op-

timization methods in order to gain the benefits of both types of approaches without

as many of the tradeoffs. Specifically, the contributions include the following:

• a pipeline that uses a multitude of continuous optimization methods to improve

an initial solution path found by a sampling-based planner.

• a demonstration that using heuristic simplification of paths found by sampling-

based planners is a critical step in this pipeline.

• evidence that special collision checking techniques introduced by continuous

optimization methods can improve performance in sampling-based methods.

1.4 Organization

The rest of this thesis focuses on this idea of combining sampling-based planners and

continuous optimization methods. Chapter 2 covers the necessary definitions needed

for the problem and reviews the literature of path planning. Chapter 3 introduces

the idea of a planning pipeline and describes the choices made during implementa-

tion. Chapter 4 shows the experimental performance of this planning pipeline on

5

various planning scenes. Chapter 5 looks at the related idea of using collision detec-

tion techniques introduced by continuous optimization methods in sampling-based

planners and analyzes the tradeoffs of using these alternative collision detection

methods.

6

Chapter 2

Literature Review

This chapter reviews important terms in robotic motion, the path planning prob-

lem, and two classes of algorithms that solve the problem: sampling-based motion

planners and continuous optimization methods. These two approaches serve as the

building blocks for the methods introduced later in the thesis. Section 2.1 intro-

duces the path planning problem, its components, and its extension, the optimal

path planning problem. Section 2.2 describes the ideas behind and gives prominent

examples of sampling-based motion planners, and Section 2.3 does so for continu-

ous optimization methods. Section 2.4 describes existing approaches that combine

sampling-based planners and continuous optimization methods, and details how the

proposed approach improves these existing combinations.

2.1 Robotic Motion

2.1.1 Configurations and the C-Space

In robotic motion planning, a configuration is a single position of a robot. Describing

the configuration of a robot requires specifying the position of every point on the

robot. For example, the configuration of a wheeled mobile robot can be specified

with three parameters: the x and y positions of the robot’s center on the floor,

and the direction the robot is facing. The configuration of a robotic arm can be

specified by enumerating the angles of all of the joints in the arm. These independent

parameters are referred to as degrees of freedom, or DOF. The wheeled mobile robot

has 3 DOF, and a robotic arm has N DOF, where N is the number of joints in the

7

arm.

A configuration can be considered a point in an N dimensional space. The

configuration space, also known as the C-space, of a robot is the space comprised

of all configurations of the robot. Continuing the example, the configuration space

of a wheeled mobile robot would be a 3-dimensional space, two dimensions being

every location of the robot in a room and the third being all rotations of the robot

at each location. As shown by Canny (1987), as the number of dimensions in the

C-space increases, the difficulty of the problem increases exponentially. Given that

most robotic manipulators have 6 or more DOFs, this thesis targets these high-

dimensional problems. In mathematical notation, Q is the configuration space of a

robot and q ∈ Q is a single configuration of the robot.

Another key component of motion planning is the ability to avoid collisions

with obstacles, enabled by collision detection. A collision detector is a function

that takes a configuration of a robot and returns whether or not the robot is in

collision with its environment or itself in that configuration. If a collision detector

is called on every possible configuration of a robot, the configurations that are not

in collision would make up the free configuration space, or free space, Qfree. By

knowing the entirety of the free space, finding a collision free path between any two

configurations becomes simpler. However, explicitly determining the free space is

not practical. The efficiency of collision detection and the information gained by

calling a collision detector can be useful to planning approaches, as will be shown

in Chapter 5.

The entire motion planning problem deals with the dynamics of the robot, such

as how fast each joint and link of the robot is moving, and the forces that the

robot’s actuators can exert on its joints to speed up or slow down its movement.

This problem in general is not known be decidable (Donald et al., 1993; Cheng et al.,

2007). This thesis focuses on path planning, also known as the geometric planning,

which deals with geometric constraints like joint limits or geometric obstacles, but

8

does not consider the dynamics of the robot. Once a path is returned, the speed

and timing information of the robot along that path can be calculated, a process

known as retiming. The path with time information is known as a trajectory, and

is the desired result of the full motion planning problem (Lynch and Park, 2017,

p .303). The decoupled approach of retiming does not find fully dynamic motions

like jumping, running, or throwing. However, if the robot moves at a sufficiently

controlled speed relative to the strength of its motors, this approach is valid and

does not place unreasonable restrictions on the robot. For the intended application

of this thesis, quasi-static manipulation, finding a path and retiming is a much

more efficient way to solve the motion planning problem than planning considering

dynamics.

2.1.2 The Path Planning Problem

A path planner finds a path through the C-space that goes from start to goal and

does not collide with any obstacles.

Mathematically, the problem is stated as the following:

Definition 1 (Path Planning Problem) Let c : [0, 1] → Q be a continuous func-

tion that maps an interval to a sequence of configurations. Given qstart, qgoal, and

Qfree, find a path c such that c(0) = qstart, c(1) = qgoal, and c(t) ∈ Qfree, ∀t ∈ [0, 1].

The feasible path planning problem has been shown to be PSPACE-complete

(Schwartz and Sharir, 1983; Canny, 1987), meaning that an algorithm that is guar-

anteed to either find a solution or report that no solutions exist in polynomial space,

but not necessarily polynomial time. An algorithm that is singly exponential in the

number of degrees of freedom of the robot is introduced by Canny (1987). Such

algorithms are called complete planners, but due to their inefficiency they are not

useful in practice and will not be covered further in this thesis.

Aside from complete planners, there are several other types of completeness:

9

probabilistic completeness, resolution completeness, and incompleteness. Proba-

bilistic completeness means that if there is a feasible solution and the planner can

run for arbitrarily long, the planner will eventually find a solution. Probabilistic

completeness is a weaker guarantee than completeness, as these planners cannot

confirm the non-existence of a feasible path. However, relaxing the completeness

guarantees allows for the planner to be more efficient than a fully-complete planner,

as the planner does not have to exhaustively search the space in a finite amount of

time. Many sampling-based planners in the literature are probabilistically complete

(see Section 2.2). Unless specified, all of the sampling-based planners discussed are

probabilistically complete.

Incomplete planners give no guarantees about being able to find a feasible so-

lution to the path planning problem. However, they usually use some heuristics

that help them find feasible solutions, making them useful in practice. Continu-

ous optimization methods, explained in more detail in Section 2.3, are examples of

incomplete planners.

Resolution completeness means a planner is able to either find a feasible path

or report that none exist given a discretization of the C-space that is fine enough.

Resolution completeness in common in discrete planning methods such as A* (Hart

et al., 1968). The caveat with resolution completeness is that the grid discretization

might be very fine. In addition, these types of planners are not effective at solving

the planning problem for robotic manipulators with a high number of DOFs. They

will not be covered further in this thesis.

2.1.3 Cost and the Optimal Path Planning Problem

Being able to find a feasible path is usually the minimum level of planning desired.

Often, the path produced should have certain qualities, such as a short length for

quicker execution, smoothness to reduce the forces exerted on the joint actuators,

or a high clearance to avoid obstacles. These qualities can be made explicit as a

10

cost function. A cost function, f , assigns a non-negative real value to all possible

paths, f : (C0 : [0, 1] → Q) → R≥0. A cost function is not required to be a metric

over the configuration space; in other words, the function does not have to obey the

triangle inequality. The optimal path planning problem, using some cost function,

finds the best possible path according to this cost.

Definition 2 (Optimial Path Planning Problem) Given qstart, qgoal, Qfree, and

a cost function f : (C0 : [0, 1] → Q) → R≥0, find a feasible path c that minimizes

f(c).

Analogous to the concept of probabilistic completeness in the path planning

problem is the concept of asymptotic optimality in the optimal path planning prob-

lem: given that the planner can run for arbitrarily long, an asymptotically optimal

planner will eventually find a solution with a cost within ǫ of the optimal solution,

if one exists. Asymptotically optimality implies probabilistic completeness.

Most planning approaches, both sampling and optimization alike, cannot always

solve the optimal path planning problem (Laumond et al., 2014). Instead, asymptot-

ically optimal planners approach the optimal solution, and continuous optimization

methods optimize in the path space and are subject to finding local minima.

The above definitions lay the groundwork for understanding the existing liter-

ature related to path planning. The planners and methods discussed next section

make up the components of the proposed planning pipeline.

2.2 Sampling-based Motion Planners

Sampling-based motion planners are the first practically applicable algorithms to

the high dimensional path planning problem. Sampling-based planners sample con-

figurations of the robot, use these configurations to build a discretization of the

C-space, and then use this discretization to efficiently search for feasible paths.

11

2.2.1 Feasible Planners

The Probabilistic RoadMap (PRM) planner (Kavraki et al., 1996) samples config-

urations of the robot to construct a reusable roadmap that approximates the free

space of a problem. If the sampled configuration is in collision with an obstacle,

the configuration is not added to the roadmap. If the configuration is in free space,

PRM attempts to connect this configuration to all nearby configurations using a

local planner, or a simple procedure. By default, the local planner connects two

configurations with a straight line. PRM uses this roadmap to answer multiple

planning queries efficiently. If the environment changes enough to invalidate por-

tions of the roadmap, each query must rebuild the roadmap from scratch. This

situation is known as a single query problem; PRM does not perform well in this

situation, as the majority of the roadmap does not contribute towards the final path.

The Expansive Space Trees (EST) planner (Hsu et al., 1997) focuses on this

single query problem. EST uses the notion of the expansiveness of the C-space in

order to build a tree as opposed to a roadmap. EST prioritizes adding points to the

tree that are more likely to increase the volume of the configuration space that can

be further added to the tree by a local planner. This priority is implemented by

focusing on nodes in the tree with fewer nearby neighbors in the tree. This priority

becomes more expensive to compute as more nodes are added to the tree.

The Rapidly-exploring Random Tree (RRT) planner (LaValle and Kuffner, 2001),

reduces this computational overhead from EST. RRT builds a single-use tree that

expands from the start node towards the goal node. RRT samples a configuration

from the entire configuration space and attempts to extend the existing tree to-

wards the new sample. If the extended branch lies entirely in free space, the new

motion is added to the tree. RRT implicitly defines a Voronoi diagram over the

entire space, and is biased towards regions of the problem that the planner has not

yet reached. This allows RRT to quickly expand to cover much of the C-space. The

RRT heuristic is a very effective heuristic in practice.

12

There exist other tree-based planners that solve the planning problem more

quickly in certain problems. These planners include RRT-Connect, also known

as BiRRT (Kuffner and LaValle, 2000), and KPIECE (Şucan and Kavraki, 2012).

These planners are used to generate paths for the proposed planning pipeline (see

Chapter 3).

2.2.2 Cost-aware Planners

While planners like PRM and RRT are efficient and probabilistically complete, they

do not actively improve the cost of the path as they plan. As a result, they return

low-quality paths. In fact, Nechushtan et al. (2010) construct a situation where

RRT will return an arbitrarily low-quality solution. These low-quality paths are

unintuitive and therefore unsafe to execute while working with humans. Path sim-

plification is a heuristic solution to improve these low-quality paths. Path simplifi-

cation improves the quality of a given path using a handful of different techniques,

including path shortcutting, path hybridization, and merging neighboring segments

of the path. Path shortcutting (Geraerts and Overmars, 2007) chooses two ran-

dom points on a path and attempts to connect them directly, slightly shorting the

path. Hybridization (Raveh et al., 2011) takes two or more paths and constructs a

new path from the best portions of the input paths. Anytime solution optimization

(Luna et al., 2013) combines shortcutting and hybridization. The technique alter-

nates these two methods in order to approach a more locally and globally optimal

solution. In some problems, this method can outperform the optimizing planner

RRT* (see next paragraph). In addition, all of the above types of simplification can

be extended to handle arbitrary costs (Mainprice et al., 2011). However, simplifica-

tion is not efficient with costs that are inadmissible as heuristics. While flexible and

adaptive, path simplification converges more slowly to the optimal solution than

most continuous optimization methods do.

Another solution to low-quality paths is to incorporate costs 2.1.3 into the

13

sampling-based planner’s search, an approach that Transition-based RRT (T-RRT)

(Jaillet et al., 2010) takes. T-RRT uses transition tests, an idea originating from

hill-climbing methods like simulated annealing, in order to stay in low-cost regions

of the C-space.

In addition to incorporating costs into the planning search, the RRT* and PRM*

planners (Karaman and Frazzoli, 2011) are asymptotically optimal, approaching

the globally optimal solution by continually rewiring and refining their problem

representations. While RRT* and PRM* are important theoretical results, they

converge to the optimal solution exceptionally slowly because the planners find the

optimal solution not only from the start to the goal state, but from the start to every

state. Since RRT* is designed to be a single query motion planner, this wastes time

and resources maintaining extraneous information.

Recent planners that address RRT*’s slow convergence include RRT# (Arslan

and Tsiotras, 2012), FMT* (Janson et al., 2015), Informed-RRT*, and Batch In-

formed Trees (BIT*) (Gammell, 2016). RRT# uses techniques from the discrete

planning algorithm A* (Hart et al., 1968) to avoid wasted computation. FMT*

first samples all configurations at the same time and then expands through these

configurations in cost-to-go space. Informed-RRT* bounds the volume of the tree

in construction with a hyper-ellipsoid and samples directly from this ellipsoid, thus

avoiding rejection sampling, which can be costly in high-dimensional spaces. BIT*

uses similar techniques to RRT#, FMT*, and Informed-RRT*. These planners are

currently the state-of-the-art for solving the optimal path planning problem and are

also used to generate initial paths for the planning pipeline (see Chapter 3).

While asymptotically optimal planners do eventually find the optimal solution

if one exists, they are much slower than non-optimal sampling-based planners, like

RRT-Connect, to find an initial solution. In addition, simply finding any high quality

path is sufficient in many applications of the motion planning problem, as opposed

to finding the optimal path. The next section deals with continuous optimization

14

methods, which find high-quality, but not globally optimal, paths.

2.3 Continuous Optimization Methods

While sampling-based planners model the motion planning problem as graphs or

trees, continuous optimization methods use continuous optimization to find a high

quality path quickly. These methods define a path representation and a cost function

(2.1.3). These methods are given an initial path as input, which can be either feasible

or infeasible. They use information about the gradient of the cost at the initial path

to determine an update step, a change that results in a new path that has a lower

cost than the previous path. The methods then use new information about the

gradient at the new path, repeating until there are no updates that will improve the

path cost. This final path is considered to be a local minimum of the cost function.

The methods then terminate and return the final path.

Since continuous optimization methods iteratively improve a path, they must

start with some initial path. By default, most planners start with a simple straight

line interpolation between the start configuration and the goal configuration. Dif-

ferent possible choices of paths will be discussed in more detail in Chapter 3.

All of the methods mentioned in this section additionally represent timing infor-

mation about the path implicitly, assuming there is a fixed time duration between

each point, known as a waypoint, along the path. This defines a trajectory, or a

path with timing information. Traditionally in the literature, these methods are

referred to as trajectory optimization methods for this reason. For the purposes of

this thesis, the output of these methods is viewed as a path, not as a trajectory.

For internal consistency, these methods are referred to as continuous optimization

methods, or simply optimization.

Many continuous optimization methods are not probabilistically complete be-

cause they optimize in a small area around the existing path, not globally over the

entire path space. Thus they can reach infeasible local minima and cannot always

15

find feasible paths. Because of these local minima, continuous optimization meth-

ods are not suitable for difficult motion planning problems. The proposed planning

pipeline improves the reliability of continuous optimization methods (see Chapters

3 and 4).

The next sections will describe a selection of continuous optimization methods

in chronological order: CHOMP, STOMP, TrajOpt, and GPMP2. Continuous op-

timization methods differ over several components: the representation of the path,

the cost function that is being optimized over, and the optimization algorithm used.

Each of these components is identified for each of the following methods.

2.3.1 CHOMP

Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is a continuous

optimization method that uses gradient descent to optimize a path (Zucker et al.,

2013). While different path representations are possible Byravan et al. (2014); Mar-

inho et al. (2016), in practice many implementations of CHOMP use a waypoint

path representation. The path is represented by piece-wise linear segments along a

series of N configurations, or waypoints. In this thesis, this waypoint representation

is used. CHOMP uses a cost function defined as a smoothness cost plus an obstacle

cost. Since the spacing between waypoints represents a fixed duration of time, the

smoothness cost gives higher cost to paths with larger distances between waypoints,

encouraging paths with smooth velocities, or evenly spaced waypoints. The obsta-

cle cost encourages paths to give a wide berth to obstacles. The obstacle costs are

similar to a previous type of approach known as potential fields (Khatib, Oussama,

1985), which simulates a force that pushes the robot away from obstacles. CHOMP

finds the gradient of this obstacle cost, and uses the gradient to compute the update

direction, or directions to move the waypoints in the trajectory that decrease the

cost the most, and moves the waypoints in those directions by a fixed step size.

CHOMP has an additional update step known as Hamiltonian Monte Carlo

16

(HMC), which treats the optimization procedure as a kind of simulated annealing

(Neal, 2011). This procedure makes CHOMP more resilient to local minima. In this

thesis, CHOMP uses the HMC update step.

In order to make distance queries between the robot and its environment less ex-

pensive at runtime, CHOMP and its successors (except TrajOpt) calculate a signed

distance field (SDF) for each object in the scene (see Chapter 5 for more details).

CHOMP will be used as a candidate optimizer in the pipeline proposed by this

thesis (see Chapter 3 for more details).

2.3.2 STOMP

Stochastic Trajectory Optimization for Motion Planning (STOMP) (Kalakrishnan

et al., 2011) is another continuous optimization method. STOMP’s main difference

from CHOMP is that STOMP does not need gradient information about the cost

function. STOMP computes the update direction of a trajectory by taking a convex

combination of noisily generated trajectories to find a new trajectory with lower

cost. The noisy trajectories are weighted proportionally according their cost, and

the new trajectory will not extend past any of the noisy trajectories. While CHOMP

requires the gradient of a given cost function to be computable in order to determine

the update direction of the trajectory, STOMP does not have such a requirement,

allowing more varied cost functions to be used in optimization.

Due to time limitations, STOMP is not included in the results of this thesis.

2.3.3 TrajOpt

TrajOpt (Schulman et al., 2014) is a continuous optimization method that takes

a similar approach to CHOMP. TrajOpt changes both the optimization procedure

and the obstacle portion of the cost function. TrajOpt uses a different optimization

algorithm, sequential convex optimization (SCO) with trust regions (Nocedal and

Wright, 1999, p. 64), which confines updates steps to be within a trusted region of the

17

space where the gradient information is accurate. By using SCO, TrajOpt can treat

certain parts of the cost, such as the obstacle cost, as constraints, reducing the need

for manual balancing of collision and smoothness terms. In addition TrajOpt uses

a obstacle cost based on an approximation of the swept volume of the robot’s links

between each waypoint of the path. CHOMP only computes the distance between

the robot and the environment at each specific waypoint, which requires a large

number of waypoints to ensure that the path stays collision free. TrajOpt computes

the distance between the robot and the environment continuously along the path,

not just at the specific waypoints. These differences allow TrajOpt to converge to

the locally optimal path with fewer iterations than CHOMP. In addition, TrajOpt

does not require the potentially expensive signed distance field that CHOMP does.

Chapter 5 contains further exploration of this obstacle cost.

While an improvement to CHOMP, TrajOpt still suffers from infeasible local

minimums. TrajOpt will also be used as a candidate optimizer in the pipeline

proposed by this thesis (see Chapter 3 for more details).

2.3.4 GPMP2

Gaussian Process Motion Planning (GPMP2) (Mukadam et al., 2017) is a continuous

optimization method that takes a probabilistic perspective. GPMP2 uses a similar

obstacle and smoothness cost to CHOMP, but also uses techniques developed to solve

a different problem in robotics, smoothing and mapping (Dellaert and Kaess, 2006),

or SAM. In SAM, the maximum a posteriori, or most likely, trajectory of a robot is

found given a set of observations along the trajectory, controls given to the robot,

how the robot’s state is associated to these observations and controls, and a prior

on the trajectory, or the best guess of the trajectory based on previous information.

GPMP2 uses the same SAM problem, except instead of being given observations

and controls, GPMP2 is given information about the planning scene and a prior that

restricts paths to be smooth. GPMP2 can then use techniques from SAM literature,

18

such as factor graphs (Dellaert and Kaess, 2006) and Gaussian process interpolation

(Anderson et al., 2015), to speed up the optimization process. The Gaussian process

interpolation is a similar idea to TrajOpt’s continuous collision checking. The path

can be represented at a lower resolution, requiring less information, and the method

can still reproduce the path at a high fidelity in order to check for collisions.

GPMP2’s requires the same expensive signed distance field that CHOMP uses.

Additionally, GPMP2 cannot handle hard constraints on the problem like TrajOpt

can. GPMP2 will also be used as a candidate optimizer in the pipeline proposed by

this thesis (see Chapter 3 for more details).

2.3.5 Review

Overall, continuous optimization methods are superior in the rate of convergence of

their solutions, because they exploit information local to the current path. Their

main deficiency is in their lack of completeness. This lack of completeness is because

these methods only explore a subset of the entire path space, unlike sampling-based

planners which, in the limit, explore the entire configuration space. Put another

way, continuous optimization methods are more biased towards exploitation, where

many sampling-based planners are biased towards exploration. Turning feasibility

into a soft constraint with certain costs and representations, such as CHOMP’s

sum of distances at each fixed waypoint, can prevent the optimizer from finding a

feasible path. This thesis shows that these deficiencies can be improved by combin-

ing optimization methods with sampling-based planners. Such combinations have

been proposed in the literature previously. The next section reviews these existing

combinations and emphasizes how the proposed approach differs.

19

2.4 Combinations of Sampling and Optimization

Given that both types of approaches to planning have complementary advantages,

exploration and exploitation, the next step is to combine these approaches. There

are two high-level directions that these combinations take. The first category is

a bottom-up approach, using optimization within sampling-based planners directly.

The second category is a top-down approach, using optimization to adjust the output

of a sampling-based planner. The proposed approach, the planning pipeline, falls in

the second category.

2.4.1 Bottom-up: Using optimization as a local planner

As mentioned in Section 2.2, many sampling-based planners use a local planner to

connect configurations in the free space. Some works use continuous optimization

methods as this local planner. For example, in order to plan for manipulation tasks,

at the end of a path the robot must come in close contact with the object the robot

is trying to grasp. This means that many states around the goal, and possibly

the goal itself, are in collision. Şucan et al. (2010) solve this problem by using

sampling-based planners to find a path that is close to the desired goal. Then, a

continuous optimization method, specifically CHOMP, finds a path that connects

the closest point on the path to the desired goal. The Regionally Accelerated Batch

Informed Trees planner (RABIT*) (Choudhury et al., 2016) works similarly. Instead

of connecting sampled states in BIT* with a straight line, as done in most sampling-

based motion planners, RABIT* uses CHOMP as a local planner, allowing the

planner to connect configurations the may contain obstacles between them, such

as in narrow passages. Dancing PRM* extends on RABIT*, but Dancing PRM*

does not require a priori information such as distance fields (Kim et al., 2018).

These approaches are promising, but take a different approach than this thesis. The

proposed pipeline uses continuous optimization methods as post processors instead

20

of as local planners.

2.4.2 Top-down: Using optimization as a post-processor

The idea of post-processing the output of a sampling-based planner using optimiza-

tion is referenced in (LaValle, 2006, p. 707). Using continuous optimization meth-

ods, which are designed to solve the planning problem independently, is a relatively

new idea however. One approach (Jetchev and Toussaint, 2013) learns from existing

problems and scenes to predict trajectories, thus defining their own candidate gener-

ator (Chapter 3). However, this requires creating the data necessary for learning this

path prediction. BiRRTOpt (Li et al., 2016) is a combination of a sampling-based

planner, the RRT variant known as either BiRRT or RRT-Connect (Kuffner and

LaValle, 2000), and a continuous optimization method, TrajOpt (Schulman et al.,

2014). Instead of initializing TrajOpt with a default straight line path, Li et al. ini-

tialize TrajOpt with a feasible but sub-optimal path found by RRT-Connect. Their

experiments show that BiRRTOpt has a success rate much higher than TrajOpt and

that the resulting trajectories are of higher quality than those from RRT-Connect.

BiRRTOpt can be seen either as post-processing a path produced by RRT-Connect,

or as an instance of TrajOpt with a specific initialization path. The results are

promising, but the experimental comparisons are limited: the authors only compare

RRT-Connect, TrajOpt, and BiRRTOpt. In addition the proposed pipeline shows

that heuristic simplification of paths improves the final path quality greatly when

compared to non-simplified paths.

Interleaved Sampling and Interior-Point-Optimization Motion Planning (ISIMP)

(Kuntz et al., 2017) finds an initially feasible path using an asymptotically optimal

planner, uses interior point optimization to adjust the feasible path within the plan-

ner’s structure to become the closest locally optimal path, and continues to run

the asymptotically optimal planner. The ideas in ISIMP are complementary to this

work, including ensuring the optimized path is feasible at each iteration. However,

21

ISIMP is focused on improving the conversion rate of asymptotically optimal plan-

ners, but does not improve the time to find an initial solution. By using faster

sampling-based planners such as RRT-Connect and KPIECE, the proposed pipeline

can find an initial solution more quickly, and then use the speed of simplification

and optimization to locally improve this solution.

2.5 Discussion

Sampling-based planners and continuous optimization methods both have a place

in robotic motion planning. Sampling-based planners provide the strongest practi-

cal completeness guarantees, and optimization methods give quick, quality paths in

simpler environments. However, as mentioned previously, there is a general, simple

combination of these approaches that can improve the reliability compared to op-

timization, improve the quality compared to feasible sampling-based planners, and

improve the speed compared to asymptotically optimal planners. The next chapter

describes this combination in detail.

22

Chapter 3

The Planning Pipeline: Methods

As discussed in Chapter 2, sampling-based planners and continuous optimization

methods have complementary benefits. Sampling-based planners are probabilisti-

cally complete, making them reliable in many planning problems. Continuous opti-

mization methods are fast and find high-quality paths. In order to take advantage

of both of these benefits, a planning pipeline can be used.

This pipeline consists of candidate generation and candidate optimization. Can-

didate generation finds a feasible or infeasible path that goes from start to goal,

called a candidate path. Candidate optimization takes that candidate path, im-

proves the cost, and either makes the path feasible, or if the path is already feasible,

maintains feasibility. An illustration of the pipeline can be seen in Figure 3.1. This

pipeline framework is very general, and its definition includes most sampling-based

planners and continuous optimization methods introduced in the literature. Even

though the results (Chapter 4) show the best candidate generator to be a sampling-

based planner followed by simplification, for thoroughness, this thesis defines dif-

ferent candidate generators and candidate optimizers similar to those found in the

literature and compares among many of these different pipeline instances.

3.1 Candidate Generators

The focus in candidate generation is to efficiently find a solution that is straight-

forward to optimize, balancing between additional computation and feasibility. This

balance between different candidate generators can be seen in Figure 3.2.

The first and simplest candidate generator is the straight-line generator, which

23

Figure 3.1: A high level diagram of the pipeline studied by this thesis. The inputs to the pipeline
are shown on the left. The pipeline consists of candidate generation and candidate optimization.
Each type of candidate generator and candidate optimizer is listed below their respective boxes.
Names listed in gray are proposed, but not analyzed in this thesis.

Figure 3.2: A diagram of candidate generators organized by the complexity of their computation,
going from simple to complex.

always returns a straight line through the configuration space from start to goal.

This generator requires a continuous optimization method be used as a candidate

optimizer. In fact, all of the continuous optimization methods use a straight-line

generator by default. While this method is the least computationally intensive and

continuous optimization methods are sophisticated enough to solve many simple

problems starting from straight-line paths, local minima are still an issue for more

difficult problems, and this candidate generator limits the strength of these opti-

mization methods.

Another generator is the random initialization generator, similar to the multiple

initialization method used by TrajOpt, which those authors call “multi-TrajOpt”

(Schulman et al., 2014). Out of the many ways to generate a random path, the

24

choice is made to sample a collision-free configuration of the robot and return a

path that is interpolated from start, to this configuration, to the goal. This strat-

egy is similar to multi-TrajOpt, except that multi-TrajOpt uses several manually

selected waypoints per scene that remain the same throughout multiple problems.

In addition, since multi-TrajOpt uses multiple waypoints, TrajOpt optimizes several

initial paths, which is equivalent to solving multiple problems. For the random ini-

tialization generator, a single waypoint is used to make one initial path. The results

of using multiple initial random paths can be inferred from these results. While this

method of generation increases the variability of continuous optimization methods,

many paths are still infeasible, more so than straight-line initialization.

Another generator is a sampling-based planner. This generator is similar to the

BiRRTOpt framework (Li et al., 2016), which uses RRT-Connect as the candidate

generator and TrajOpt as the candidate optimizer. Since candidate generators need

to seed continuous optimization methods with initial paths that help avoid infeasible

local minima, sampling-based planners provide paths that are already feasible. A

wide variety of sampling-based planners can be used. However, the only major

difference between planners is if they consider cost or not (see Appendix A).

The final generator considered is a sampling-based planner that simplifies its

output. Even though simplification can be seen as a part of the candidate opti-

mization stage, for the purposes of this thesis, simplification is better placed as an

extension of candidate generation. The intuition is that continuous optimization

works by making small changes to the entire path iteration by iteration. For exam-

ple, CHOMP multiplies each gradient step by a small scaling factor, and TrajOpt

explicitly has a trust region that each iteration does not extend past. Since the

output of sampling-based planners can be highly non-optimal, with many changes

in direction, the number of steps needed to shorten these paths is much higher than

the number of steps needed for a smoother path. Simplification can shorten the

path much more quickly than these limited continuous optimization methods, at

25

least for the first few iterations. Simplifying the output decreases the distance from

the given path to a higher quality path by coarsely smoothing the path.

3.2 Candidate Optimizers

The candidate optimizers are more straightforward: either a continuous optimization

method like CHOMP, TrajOpt, or GPMP2 is used, or the candidate path is not

optimized. The latter assumes that the candidate path is already feasible. For more

details on the specific optimization techniques used by these continuous optimization

methods, see Chapter 2.

A specific choice is made when passing a path from the candidate generator to

the candidate optimizer: the number of waypoints in the path, N , is changed to fit

the number of waypoints used by that optimization method, M . M is chosen by the

specific optimization method, and decreasing M is likely to cause optimization to

produce infeasible paths. If N < M , then waypoints are evenly interpolated along

each path segment until N = M . This does not mean that all waypoints along the

path will be evenly spaced, but that waypoints are spaced as evenly as possible while

leaving the original waypoints unchanged. This makes sure that the input path does

not cut corners and will remain feasible. If N > M , then the optimization model

increasesM until N = M . IncreasingM increases the time spent in optimization, as

it increases the size of the continuous optimization problem being solved. However,

this case of N > M does not happen often in the pipeline, as many simplified paths

are less than 10 waypoints long. Overall, the choice is nuanced, stemming from the

fact that sampling-based methods and continuous optimization frame the planning

problem differently.

Many sampling-based asymptotically optimal planners can take a variety of cost

functions, and continuous optimization methods can consider different costs as well.

However, there is a base cost function for each continuous optimization method that

is tightly coupled to the method itself, and usually required for well behaved opti-

26

mization. As a result, each of the motion planning approaches considered optimizes

over a slightly different cost function. A commonly used cost in sampling-based

planners is path length, which makes planners try to find the minimum length path.

While continuous optimization methods also attempt to find minimum length paths,

the costs they use are different enough from path length that the resulting paths

often prioritize different aspects of those costs.

Some candidate generators and candidate optimizers that are plausible but not

tested in this thesis include candidate generators that produce multiple paths, such

as using a multi-query planner such as PRM or running a fast sampling planner

multiple times, and candidate optimizers that combine these multiple paths (path

hybridization (Raveh et al., 2011), or GPMP-GRAPH (Huang et al., 2017)). These

generators are left as future work.

3.3 Discussion

The definition of the planning pipeline is intentionally left simple and general. No

continuous optimization method had to be altered to be included in the pipeline,

and the generality leaves plenty of room for further extensions to the idea. This

simplicity still results in a high performing planning approach, as will be shown in

the next chapter.

27

Chapter 4

The Planning Pipeline: Results

This chapter shows the results of using the proposed planning pipeline in several

different planning scenes of varying difficulty. Given path planning is a complicated

process with many factors involved, this chapter focuses on providing many different

forms of information, including different costs of the same path, the overall number

of problems solved, the timing results of the pipeline, and the convergence rates of

different planning approaches. Section 4.1 describes the experimental setup used.

Section 4.2 describes the results themselves.

4.1 Experiments and Implementation

The experiments are run on an Ubuntu 16.04 Virtual Machine with a 4.2GHz pro-

cessor with 3 cores (the planner implementations are single threaded) and a overly

generous 22GB of RAM. The robot is the 7 DOF Barrett WAM arm, which has a

gripper that can open and close. For the scenes considered, the gripper is left open,

as this configuration is reasonable for manipulation planning.

The sampling planners are from the Open Motion Planning Library (OMPL)

(Şucan et al., 2012). All cost-aware sampling-based planners and simplifiers use

a path length cost, and all of the other planner’s settings are left at the defaults.

The asymptotically optimal planners, on experiments other than the convergence

experiments, return the first found solution.

The continuous optimization methods all have publicly available implementa-

tions, the core of which are unmodified and used in these results (Personal Robotics

Lab, 2013; Schulmann, 2013; GTRLL, 2016a,b). Extensions are added to TrajOpt

28

and CHOMP to handle queries for the cost of an arbitrary path according to that

particular optimizer. GPMP2’s cost is difficult to obtain for arbitrary paths, given

that internally, GPMP2 does not directly operate with a single value of the cost.

Therefore, GPMP2’s cost is not included in the results. However, the smoothness

of the each path is included, defined as the sum of angles between each segment of

the path; GPMP2 does include a prior that encourages smoothness.

The parameters on the continuous optimization methods are left at their defaults,

where the methods have been found to exhibit good performance. The one default

value that was changed is the number of waypoints in TrajOpt. By default, the

number of waypoints is 10, but significantly more problems are solved by increasing

the number of waypoints to 25, without adding significant planning time. This

specific number is not the only valid option, as again, many of the choices made

in combining these planners are nuanced and not ultimately decisive. The defaults

values

The planners are run using two different frameworks: the sampling-based plan-

ners are run in MoveIt! (Şucan and Chitta, 2012), and the continuous optimization

methods are run in OpenRAVE (Diankov and Kuffner, 2008). After finding a path

in MoveIt!, the path is converted to the OpenRAVE format and passed to an op-

timization method. This split of planners is motivated by the fact that, according

to our experiments, checking for collisions in OpenRAVE takes 10 times as long as

MoveIt! takes. This would not be an issue if all methods used the same collision

checker. However, the continuous optimization methods all use collision checking

methods external to OpenRAVE; CHOMP and GPMP2 use their own approxi-

mation of the robot using spheres and a signed distance field (SDF) to represent

environment geometry, and TrajOpt uses the Bullet library (Coumanns, 2012). As

collision checking takes up the bulk of sampling-based planners’ execution time,

comparing the run times of sampling-based planners running in OpenRAVE is not

informative.

29

When different pipeline instances share initial stages, for example RRT-Connect

to TrajOpt and RRT-Connect to GPMP2, the resulting paths and their metrics

after each stage are pooled and fed to the next stage. In the example above, RRT-

Connect is run a number of times, and resulting path and its information is saved

each time. Then a copy of each path is used as input to both TrajOpt and GPMP2.

This pooling reduces the variance between different pipelines that share similar

components, as the different optimizers are running on the same input paths. While

pooling might increase the bias of the results, pooling also provides a significant

reduction of the runtime of experiments that is necessary given the large number of

instances of the pipeline and the number of problems on each scene.

For continuous optimization methods that use signed distance fields (SDFs), the

time to create and load the SDF is not included in the planning time. As calculating

the SDF is an amortized cost, the SDF related times are calculated separately. The

time to create the SDF ranged from 20 seconds for CHOMP to 110 seconds for

GPMP2, although the outputs of both implementations are similar. The time to

load the already calculated SDF is less than a millisecond for CHOMP and 0.2

seconds for GPMP2 consistently.

4.2 Results and Analysis

Four realistic but difficult scenes (Figure 4.1) are created to represent challenging

scenes that a robot might encounter regularly. The first scene (Figure 4.1a) is sev-

eral short columns in the middle of the table that the robot can avoid by moving

into the free space above the columns. This scene is one where continuous opti-

mization methods excel. As there is a large amount of free space directly above

the table and obstacles, moving the robot out of collision becomes simple. The sec-

ond scene (Figure 4.1b) is a more constrained problem, where the arm must reach

into a shelf, which creates a narrow passage in the configuration space. The third

scene (Figure 4.1c) uses more realistic mesh-based obstacles and includes a desk and

30

(a) (b)

(c) (d)

Figure 4.1: The configurations used in each scene overlaid onto the same image. The planning
problems tested consist of all combinations of pairs of configurations in a scene. (4.1a) is the
column scene. (4.1b) is the shelf scene. (4.1c) is a scene with mesh obstacles. (4.1d) is a scene in
a lab, based on Mukadam et al. (2017).

clutter. The fourth scene shares elements from all of the above scenes and is also

used by Mukadam et al. (2017). Each scene has several (5-6) configurations, and

the planning problems reported consist of all combinations of pairs between each

configuration in the scene.

To begin, there are several specific results that can narrow the number of instan-

tiations of the pipeline considered. First, simplification of sampling-based planners

paths results in strictly lower cost solution paths after optimization compared to

direct optimization of sampling-based planner paths. For all forms of optimization,

RRT-Connect followed by simplification outperforms RRT-Connect by itself as a

candidate generator. Simplification also greatly reduces the variability of the indi-

vidual plans. Figures relating to these results can be found in Appendix A. Because

this result holds throughout the problems, the results of optimization over sampling-

31

based planner paths followed by simplification are given the most attention.

A second observation that follows closely from the first is that many sampling-

based planners produce similar paths after simplification. A detailed discussion of

these results can also be found in Appendix A. Guided by this observation, the

focus is on two categories of sampling based planners, feasible sampling-based plan-

ners and asymptotically optimal sampling-based planners, as candidate generators.

RRT-Connect and BIT* are used as the ideal planner for the respective categories.

In the next several figures, a table of aggregate results is shown, followed by

more detailed results from one of the problems in that scene. The problems chosen

for each scene are representative of the results as a whole: many of the problems

benchmarked are analogous to one of the selected problems. In the table of aggregate

results, the metrics of the final path produced by the pipeline is shown. That is, even

though it is possible and encouraged to fall back and use the feasible path produced

by candidate generation if candidate optimization produces an infeasible path, the

results shown do not fallback in order to focus on the final results of pipeline. In the

detailed results, the quality of the paths output by specific pipelines is compared

according to four different costs: the CHOMP cost of the path, the TrajOpt cost of

the path, the path length, and the smoothness of the path. For each of these costs,

lower is better. Each continuous optimization method is only optimizing according

to its own costs, but the insight gained by seeing how these costs are related to each

other is still beneficial. The convergence figure, seen in the lower right of each figure,

is a plot of the path length of the best known length as the planners continually

solve the problem. This path length is directly measured at each iteration of the

planner or optimization method.

The results start with the column scene (Figure 4.1a). As there is lots of free

space above the table that the robot can easily reach, many pipeline instantiations

do well on this scene. As can be seen in Table 4.2b, the instantiations can solve a

large majority of the problems given less than 3 seconds of planning time. CHOMP

32

(a)

(c)

Planner Solved Planning Time (s) Scaled Path Length
CHOMP 156/180 1.86± 0.04 1.07± 0.09
TrajOpt 156/180 0.14± 0.11 1.05± 0.05
GPMP2 180/180 0.04± 0.01 1.53± 0.27
Random-CHOMP 110/180 1.83± 0.22 1.97± 0.83
Random-TrajOpt 136/180 0.15± 0.08 1.86± 0.65
Random-GPMP2 169/180 0.05± 0.01 1.57± 0.27
RRTCnt 180/180 0.03± 0.01 3.62± 1.33
RRTCnt-CHOMP 172/180 1.86± 0.01 1.71± 0.43
RRTCnt-TrajOpt 177/180 0.14± 0.06 1.95± 0.86
RRTCnt-GPMP2 176/180 0.07± 0.01 1.58± 0.26
RRTCnt-Simp 180/180 0.09± 0.03 1.76± 0.70
RRTCnt-Simp-CHOMP 168/180 1.92± 0.16 1.21± 0.26
RRTCnt-Simp-TrajOpt 177/180 0.18± 0.06 1.39± 0.51
RRTCnt-Simp-GPMP2 180/180 0.13± 0.03 1.57± 0.26

(b)

(d)

Figure 4.2: Results from the column scene (Figure 4.1a). (4.2a) An example of the problem in this
scene. Figures 4.2c and 4.2d show more detailed data for this specific problem. (4.2b) The fraction
of instances solved, planning times, and scaled path length. Both planning times and scaled path
length are ± 1 standard deviation). There are 15 problems in the scene, and each planner is run
12 times on each problem. The scaled path length is found by scaling each path length where the
planner successfully solved a problem by the lowest path length for that problem for all pipeline
instantiations. (4.2c) The final path quality of the problem indicated in Figure 4.2a according
to different costs. The black line on each bar is 1 standard deviation, the costs for TrajOpt and
CHOMP are unit-less, and the cost for path length is radians. Bars that are missing indicates
that particular pipeline instantiation did not solve the given problem. The numbers at the base of
each bar are the fraction of times the given pipeline instantiation solved this problem. (4.2d) The
quality of correct solutions for the problem indicated in Figure 4.2a over time. Each curve plotted
is the path length over time for a single run of one planner. The x-axis is on a log scale, in order
to more clearly see the difference in performance of optimization methods.

33

has the worst chance of solving a given problem in the scene, If CHOMP is given a

feasible candidate, the optimized solution remains feasible more often, but still not

100% of the time.

In terms of cost, when continuous optimization methods do solve a given prob-

lem, their path length is slightly superior. Table 4.2b shows the scaled path length

from each planner. The scaled path length is the path length of a feasible solu-

tion divided by the best path length found over all pipeline instantiations for that

problem. Thus a scaled path length of 1.00 implies that this path is the best from

all of the instantiations. While the shortest path lengths found are from CHOMP

and TrajOpt, the path lengths of RRT-Connect followed by simplification followed

by CHOMP or TrajOpt are within a standard deviation of these costs, with the

exception of GPMP2 and smoothness. Figure 4.2c shows that for all methods of op-

timization, the simplified RRT-Connect and BIT* candidate generators have similar

costs compared to the straight-line generator, and superior costs to the random gen-

erator. Additionally, for any candidate generator, GPMP2 finds almost the same,

very smooth, solution. This suggests that GPMP2’s optimization has fewer and

larger minima in simple scenes than other optimization methods.

Figure 4.2d shows the results of measuring the path length of asymptotically

optimal planners and optimization methods as time progresses. BIT* and RRT*

are given 80 seconds to plan, and the time where the last best path is found is

where the curve stops. BIT* and RRT* only reach the quality of the solutions that

RRT-Connect, simplification, and optimization methods can find after many sec-

onds. This slow speed is likely because the existing asymptotically optimal planners

cannot handle simplification or optimization during planning. An approach similar

to (Kuntz et al., 2017) would be similar to the results of optimization here.

Next is the shelf scene (Figure 4.1b). As this scene contains more difficult plan-

ning problems than the column scene, the number of problems that continuous

optimization methods can solve is much lower. While RRT-Connect followed by sim-

34

(a)

(c)

Planner Solved Planning Time (s) Scaled Path Length
CHOMP 48/120 1.86± 0.07 1.02± 0.02
TrajOpt 24/120 0.09± 0.03 1.00± 0.00
GPMP2 60/120 0.05± 0.01 1.48± 0.28
Random-CHOMP 13/120 1.71± 0.51 2.40± 1.14
Random-TrajOpt 36/120 0.22± 0.10 1.42± 0.41
Random-GPMP2 45/120 0.06± 0.01 1.60± 0.46
RRTCnt 120/120 0.71± 0.96 4.50± 2.53
RRTCnt-CHOMP 36/120 2.46± 0.99 1.65± 0.52
RRTCnt-TrajOpt 69/120 1.00± 1.00 1.64± 0.65
RRTCnt-GPMP2 80/120 0.77± 0.96 1.46± 0.24
RRTCnt-Simp 120/120 1.50± 1.64 1.63± 0.54
RRTCnt-Simp-CHOMP 49/120 3.30± 1.59 1.10± 0.10
RRTCnt-Simp-TrajOpt 105/120 1.73± 1.66 1.39± 0.42
RRTCnt-Simp-GPMP2 97/120 1.56± 1.65 1.53± 0.28

(b)

(d)

Figure 4.3: Results from the Shelf scene. (4.3a) An example of the problem in this scene. Figures
4.3c and 4.3d show more detailed data for this specific problem. (4.3b) The fraction of instances
solved, planning times, and scaled path length. Both planning times and scaled path length
are ± 1 standard deviation. There are 10 problems in the scene, and each planner is run 12
times on each problem. The scaled path length is found by scaling each path length where the
planner successfully solved a problem by the lowest path length for that problem for all pipeline
instantiations. (4.3c) The final path quality of the problem indicated in Figure 4.3a according to
different costs. The black line on each bar is 1 standard deviation, and costs for TrajOpt and
CHOMP are unit-less. Bars that are missing indicates that particular pipeline instantiation did
not solve the given problem. The numbers at the base of each bar are the fraction of times the
given pipeline instantiation solved this problem. (4.3d) The quality of correct solutions for the
problem indicated in Figure 4.3a over time. Each curve plotted is the path length over time for a
single run of one planner. The x-axis is on a log scale, in order to more clearly see the difference
in performance of optimization methods.

35

plification still solves 100% of the problems, RRT-Connect takes around 10 times as

long to solve these problems compared to problems from the previous scene, as seen

in Table 4.3b. Using the random initialization candidate generator gives optimizers

a poor chance to solve these problems as well. Furthermore, a significant issue is

apparent: the output of optimizing over a feasible candidate will not always remain

feasible. CHOMP and GPMP2 will still almost always fail to solve problems, even

when given a feasible solution initially. This seems to be due to poor cost formula-

tions by CHOMP and GPMP2. Even though CHOMP will rarely find a solution,

the CHOMP cost of a path always improves after running CHOMP. Thus the path

is becoming more optimal according to CHOMP, but in reality the waypoints are

becoming spaced out enough to lower the obstacle cost of the path. GPMP2 has

a similar problem, as GPMP2 uses the same obstacle cost formulation as CHOMP.

TrajOpt does not have this exact issue and overall performs better, but TrajOpt still

has representation errors in its optimization as well, as seen in Figure 4.5b. This

causes some of the feasible paths TrajOpt receives to not remain feasible. However,

even though optimization might not always result in a feasible solution, there is still

have a feasible solution from the candidate generation. This allows the pipeline to

remain probabilistically complete; as long as the candidate generator finds a feasible

solution, some feasible solution can be returned.

In terms of cost, the results in Table 4.3b are similar to the previous scene.

However, CHOMP and TrajOpt only solve 4 and 2 problems respectively out of

10. The problems solved happen to be simpler problems, and continuous optimiza-

tion methods excel at simpler problems. As can be seen in Figure 4.3c, simplified

sampling-based planner candidate generators, specifically BIT*, result in the low

costs for all of the optimizers.

Figure 4.3d is similar to the column scene. However, RRT* is not able to find a

solution in the given amount of time, and is absent in Figure 4.3d.

There are also results for the third and fourth scenes. The third scene (Fig-

36

(a)

(c)

Planner Solved Planning Time (s) Scaled Path Length
CHOMP 108/120 1.86± 0.01 1.07± 0.08
TrajOpt 72/120 0.38± 0.13 1.82± 0.50
GPMP2 84/120 0.06± 0.01 1.66± 0.42
Random-CHOMP 53/120 1.63± 0.59 2.78± 1.75
Random-TrajOpt 55/120 0.37± 0.27 3.64± 2.00
Random-GPMP2 70/120 0.06± 0.01 1.75± 0.40
RRTCnt 120/120 0.11± 0.15 5.15± 2.34
RRTCnt-CHOMP 89/120 1.95± 0.27 2.22± 0.82
RRTCnt-TrajOpt 85/120 0.32± 0.17 4.04± 2.17
RRTCnt-GPMP2 84/120 0.17± 0.15 1.64± 0.40
RRTCnt-Simp 120/120 0.26± 0.27 1.87± 0.76
RRTCnt-Simp-CHOMP 78/120 2.01± 0.45 1.23± 0.23
RRTCnt-Simp-TrajOpt 96/120 0.48± 0.29 2.06± 0.62
RRTCnt-Simp-GPMP2 86/120 0.31± 0.28 1.65± 0.41

(b)

(d)

Figure 4.4: Results from the full mesh scene (Figure 4.1c). (4.4a) An example of the problem in this
scene. Figures 4.4c and 4.4d show more detailed data for this specific problem. (4.4b) The fraction
of instances solved, planning times, and scaled path length. Both planning times and scaled path
length are ± 1 standard deviation. There are 15 problems in the scene, and each planner is run
12 times on each problem. The scaled path length is found by scaling each path length where the
planner successfully solved a problem by the lowest path length for that problem for all pipeline
instantiations. (4.4c) The final path quality of the problem indicated in Figure 4.4a according to
different costs. The black line on each bar is 1 standard deviation, and costs for TrajOpt and
CHOMP are unit-less. Bars that are missing indicates that particular pipeline instantiation did
not solve the given problem. The numbers at the base of each bar are the fraction of times the
given pipeline instantiation solved this problem. (4.4d) The quality of correct solutions for the
problem indicated in Figure 4.4a over time. Each curve plotted is the path length over time for a
single run of one planner. The x-axis is on a log scale, in order to more clearly see the difference
in performance of optimization methods.

37

(a)

(c)

Planner Solved Planning Time (s) Scaled Path Length
CHOMP 94/180 1.72± 0.41 1.21± 0.34
TrajOpt 24/180 0.17± 0.11 1.24± 0.23
GPMP2 120/180 0.06± 0.01 1.61± 0.49
Random-CHOMP 24/180 1.27± 0.81 2.56± 1.77
Random-TrajOpt 23/180 0.14± 0.08 1.80± 0.64
Random-GPMP2 69/180 0.06± 0.01 1.56± 0.61
RRTCnt 180/180 0.06± 0.04 4.82± 2.70
RRTCnt-CHOMP 59/180 1.81± 0.32 1.98± 0.62
RRTCnt-TrajOpt 77/180 0.18± 0.12 2.67± 1.34
RRTCnt-GPMP2 113/180 0.11± 0.04 1.50± 0.61
RRTCnt-Simp 180/180 0.23± 0.12 2.17± 1.00
RRTCnt-Simp-CHOMP 62/180 1.84± 0.58 1.49± 0.84
RRTCnt-Simp-TrajOpt 71/180 0.34± 0.16 1.67± 0.48
RRTCnt-Simp-GPMP2 128/180 0.28± 0.12 1.55± 0.65

(b)

(d)

Figure 4.5: Results from the lab scene (Figure 4.1d). (4.5a) An example of the problem in this
scene. Figures 4.5c and 4.5d show more detailed data for this specific problem. (4.5b) The fraction
of instances solved, planning times, and scaled path length. Both planning times and scaled path
length are ± 1 standard deviation. There are 15 problems in the scene, and each planner is run
12 times on each problem. The scaled path length is found by scaling each path length where the
planner successfully solved a problem by the lowest path length for that problem for all pipeline
instantiations. (4.5c) The final path quality of the problem indicated in Figure 4.5a according to
different costs. The black line on each bar is 1 standard deviation, and costs for TrajOpt and
CHOMP are unit-less. Bars that are missing indicates that particular pipeline instantiation solved
the given problem. The numbers at the base of each bar are the fraction of times the given pipeline
instantiation solved this problem. (4.5d) The quality of correct solutions for the problem indicated
in Figure 4.5a over time. Each curve plotted is the path length over time for a single run of one
planner. The x-axis is on a log scale, in order to more clearly see the difference in performance of
optimization methods.

38

ure 4.4) uses detailed meshes to make for more complex collision checking. The

main difference between the problems in this scene and the previous two scenes is

that, while still difficult, continuous optimization methods solve more problems from

straight-line candidate generators. This can be seen from Figure 4.4b and Figure

4.4c. This might be because the problems in this scene have large amounts of free

space, above and away from the desk. The fourth scene, Figure 4.5, is a recreation of

a scene used in the results of (Mukadam et al., 2017). In this scene, TrajOpt shows

some of the same feasibility issues seen in CHOMP and GPMP2 in earlier scenes,

meaning that most continuous optimization methods are susceptible to this issue.

Additionally, BIT* surprisingly outperforms RRTConnect and CHOMP in the the

convergence experiment in Figure 4.5d. This surprise might be because GPMP and

CHOMP are finding paths with higher clearance, which converge at a higher path

length.

4.3 Discussion

From the results, there are three main observations. The first main observation is

that initializing continuous optimization methods with feasible candidates is more

likely to result in the optimization method outputting a feasible path than compared

to initializing with a straight-line candidate. This does depend on optimization

specific aspects like cost formulation, but for TrajOpt, using a candidate generator

that returns a feasible path always raised the chance the problem could be solved.

The second main observation is that pipelines consisting of a sampling-based

planner, simplification, and an optimization method produce paths with similar

costs compared to pipelines consisting of straight line generator and an optimization

methods in many cases. This can be seen in Figures 4.2c and 4.3c, as these Figures

are grouped by the final optimization. Given all of the possible candidate generators,

sampling-based planners and simplification result in the same, or slightly higher

costs for each optimizer’s own costs, i.e., for TrajOpt, the TrajOpt cost is minimized

39

when using a candidate generated from RRT-Connect and simplification, and for

CHOMP, the CHOMP cost is minimized when using the same candidate.

The last main observation is that optimization over sampling-based candidates

finds a better cost solution more quickly than asymptotically optimal planners like

RRT* and BIT*. This reinforces the results found in (Kuntz et al., 2017), that

asymptotically optimal planners, while powerful, require additional optimization to

improve their speed. Optimizing the simplified solution from a non-optimal sampling

planner results in a much better cost than running RRT* or BIT*, in this case

fractions of a second. RRT* and BIT* can eventually reach and sometimes surpass

this cost if ran for an extended time, in this case 80 seconds. However, running a

motion planner for 80 seconds is no longer practical for interactive use.

The main drawback of continuous optimization methods is that they are not

guaranteed to maintain feasible paths. However, the pipeline still finds solutions

to problems more often with feasible initializations than with straight lines. In

addition, if the final path found by the pipeline is infeasible, the pipeline can always

fallback to a feasible path found by candidate generation, if available.

Overall, the planning pipeline with a sampling-based planner followed by simpli-

fication as a candidate generator is better than sampling-based planning and con-

tinuous optimization methods individually in terms of quality and reliability and is

competitive in terms of planning time. While the planning pipeline may not be the

fastest planning approach for every problem, the combined overhead of the compo-

nents of the planning pipeline is minor compared to the best planning approach for

that problem.

40

Chapter 5

Collision Detectors from Optimization Methods

As seen in Chapter 2, continuous optimization methods approach the path planning

problem from a different perspective than sampling-planners do, optimizing directly

in the path space, and treating collisions as soft constraints. However, optimization

methods have not only introduced this new perspective but also several promising

techniques in collision detection. Collision detection still takes up a large portion of

the planning time in sampling-based methods when initially finding feasible solutions

in problems with highly detailed robot and scene models (Kleinbort et al., 2016).

The collision techniques introduced by optimization methods lose a small amount of

accuracy in the collision detection process in order to reduce the computation time

greatly. While these collision techniques were introduced specifically for continuous

optimization methods, they have beneficial qualities that could also improve the

performance, both success and speed, of sampling-based planners as well. This

chapter discusses those techniques, applies them to sampling-based path planners,

and suggests several ways these techniques can be utilized and improved.

The rest of this chapter is as follows. Section 5.1 is a broad overview of collision

detection, representing the current state of collision detection as used in sampling-

based planners. Section 5.2 discusses the method introduced by CHOMP (Zucker

et al., 2013) of using spheres to approximate the robot and signed distance fields to

represent the environment, describes the method (Section 5.2.1) and shows compar-

isons of this collision detection method with standard collision detectors (Section

5.2.2). Section 5.3 discusses the method introduced by TrajOpt (Schulman et al.,

2014) of approximating the swept volume of a robot in motion to perform continu-

41

ous collision detection, describes the method (Section 5.3.1) and shows the results

of applying this method to sampling-based planners (Section 5.3.2). Section 5.4

summarized these results and points to promising future work.

5.1 Collision Detection Background

This section is not meant to be a complete literature review of collision detection

methods. Instead, this section gives background for current collision detection meth-

ods used in robotics, and an overview of what types of collision detection methods

can be used. The techniques and specifics of implementing such collision detectors

is also out of the scope of this chapter. For more information on these specifics, see

(Devadoss and O’Rourke, 2011; Ericson, 2004).

A collision detector is a boolean function that, given a configuration of the robot,

returns if that configuration is valid, i.e. true if all of the robot’s links are not in

collision with any obstacle in the scene or any other links, and false otherwise. Col-

lision detection happens at various resolutions, as first checking for collisions at

coarser resolutions is cheaper. This statement describes a technique known as a

bounded volume hierarchy (BVH). A BVH is a tree structure where each node is

associated with some geometric primitive. The leaf nodes of this tree are parts of the

robot itself, and the interior nodes are a coarser representation, usually axis-aligned

bounded boxes (AABB) or oriented bounding boxes (Gottschalk et al., 1996). Col-

lision checks can start at these interior nodes, speeding up the collision calculation

immensely.

As mentioned above, a collision detector is usually a boolean function. How-

ever, a collision detector can return additional information about obstacles. One

extension, first proposed in (Gilbert et al., 1988) and extended in (Lin and Canny,

1991), can be used to get the proximity between two objects. This algorithm itera-

tively approaches the distance between two convex polytopes, and in 3-dimensions,

takes linear time in the amount of vertices of the objects (constant time in (Lin

42

and Canny, 1991)). The distance between two objects is desirable information in

robotics. Knowing this distance allows motion planners to keep the robot in open

space, as opposed to being very close to obstacles where small control errors could

cause the robot to collide with an obstacle.

Another class of algorithms known as penetration methods (van den Bergen,

2001; Kim et al., 2002) can determine information about collisions. Specifically,

they can compute the penetration depth and the normal vector of the collision,

which points towards the shortest distance to move the objects to a non-colliding

position. These algorithms are particularly useful in continuous optimization meth-

ods. Since the initial path in a continuous optimization method is often infeasible,

the optimization method relies on its method of collision checking to return the

penetration depth and normal vector in order to derive a gradient that can then

be used to optimize the motion out of the collision. Both proximity methods and

penetration methods can be used together to answer a distance query about the

robot in a given scene.

The last extension of collision detection discussed is continuous collision detection

(CCD) (Redon et al., 2005). Normally when path planners, both sampling-based

and continuous optimization methods, need to find collision information over a con-

tinuous path segment, they do so at discrete points along the path segment. This

creates a developer choice between a higher fidelity of points at the expense of extra

collision time or a lower fidelity of points at the expense of higher error in collision

checking. CCD solves this problem by determining collision information over the

entire period of motion. Both sampling-based planners and continuous optimization

methods can use continuous collision detection to improve their performance.

Many sampling-based planners use these collision detection algorithms to de-

termine if a configuration of the robot is in collision or to maximize the minimum

clearance from obstacles. However, continuous optimization methods have intro-

duced new methods of collision detection. While these new methods are tailored

43

specifically to their optimization methods, the new methods can beat the perfor-

mance of the above collision algorithms at the cost of over- and under-approximation.

5.2 Spherical Robot Approximations and Signed Distance

Fields

Continuous optimization methods often make distance queries about the current

state of the robot, which is necessary to optimize the path out of collision. Spherical

robot approximation and signed distance fields (SDFs) improve the efficiency of these

distance queries.

5.2.1 The Method

The combination of spherical robot approximation and SDFs was first introduced

by CHOMP (Zucker et al., 2013). In this algorithm, the robot is approximated with

spheres attached to each link, similar to (Hubbard, 1996), and the environment

is approximated with an SDF. The spheres encompass volume outside the robot’s

links, making it an over-approximation of the robot’s geometry. Figure 5.1 shows

an example of what spherical approximation looks like when applied to a robot. To

compute the SDF of a planning scene, the scene is first discretized into a fine grid,

and the signed distance at each voxel in the grid is calculated. The signed distance

is the proximity to the nearest obstacle in the free space, and if the point is in

collision with an obstacle, the value is the negative of the penetration depth. The

signed distance field can be calculated in O(nd), where n is the number of voxels

contained in the grid and d is the number of dimensions of the grid, three for a robotic

workspace (Felzenszwalb and Huttenlocher, 2012). With these two approximations,

performing a distance query only takes O(s), where s is the number of spheres

used to approximate the robot. This algorithm is efficient because the calculation

iterates through each sphere, and performs a lookup in the SDF at that sphere’s

44

(a) (b)

Figure 5.1: The UR5 robot without (5.1a) and with (5.1b) spherical approximation.

center. The minimum value found in the SDF minus the radius of the sphere over all

of the spheres is the robot’s signed distance. This approximation is used not only by

CHOMP but also by STOMP (Kalakrishnan et al., 2011) and GPMP2 (Mukadam

et al., 2017). The next section shows that, in certain cases, this method of collision

checking can also be useful for sampling-based path planners.

5.2.2 Results

This section compares spherical approximation with the current state-of-the-art col-

lision checking system for robotics, FCL (Pan et al., 2012). The simplest way to

determine the performance of a collision checker is a benchmark of the spherical

approximation method and FCL. For this benchmark, a UR5 robot (Figure 5.1) is

placed in random configurations and collision checked 50,000 times. The average

number of checks per second is shown in Table 5.1. Since FCL performs different

45

Table 5.1: FCL vs Spherical Approximation Collision Detection

Type of Collision Query FCL Sphere Approximation
Boolean Collision (checks / second) 23,714 9,080
Distance Query (checks / second) 450 9,240

algorithms when retrieving proximity information, there are two tests. One test

only determines if the robot is in collision or not, and the other test additionally

retrieves nearest distance and nearest points.

When answering boolean queries, collision checking with FCL is twice as fast

as the spherical approximation. However, when attempting to retrieve collision

information, FCL is 10 times as slow as the spherical approximation. FCL’s use

of BVHs is efficient enough to perform better than spherical approximations, but

distance queries are more complicated and require much more time. Since both

queries can be answered by spherical approximation, the times between each type

of query for this method are analogous.

These results show that a standard sampling-based planner will not have any

speed increases when using this spherical approximation instead of the state-of-art

collision detection methods found in FCL. However, when a sampling-based planner

can make use of addition distance information, either as clearance information or

through a tighter integration with planning, using this special method for distance

queries would improve the performance of the planner dramatically. Given that

spherical approximation and SDFs conservatively over-approximate the robot and

discretize the environment, the distances returned by SDFs are slightly closer to ob-

stacles than the true distance. A method of measuring the approximation accuracy

of the spherical approximation is given by (Hubbard, 1996, p. 197) and involves

computing the upper bound on the separation distance between the robot and an

obstacle that will cause the spherical approximation to report a collision. However,

reporting this approximation accuracy is not in the scope of this thesis, and is left

46

to future work.

5.3 Swept Volume Approximation via Convex Hulls

The next collision detection method was introduced by TrajOpt (Schulman et al.,

2014). While spherical robot approximation and SDFs decreases the time necessary

to find the proximity or penetration depth of the robot with obstacles, this collision

method, swept volume approximation, indirectly improves the speed of TrajOpt’s

optimization by reducing the number of waypoints required in the path. This colli-

sion method is a continuous collision detection method that approximates the path

of a robot using convex hulls. This section reviews the method originally proposed

by TrajOpt, applies the method to sampling-based path planners, and analyzes the

results.

5.3.1 The Method

The swept volume of a motion of a robot is the set of all points that the robot

moves through during the motion. Continuous collision detection can be seen as

a single collision or distance query on the swept volume of the robot between two

configurations. While the exact swept volume of the robot is very expensive to

compute, using convex hulls provides a fast approximation of swept volume.

Swept volume approximation starts with two successive configurations of the

robot. For each link of the robot, the approximation places two copies of that link

in the workspace. The approximation then creates a convex hull surrounding both

copies of the link. This convex hull is an approximation of the swept volume of

this particular link, and is used as a collision object. This process is repeated for

each link of the robot. In TrajOpt, this convex hull is used with standard collision

detection methods to answer distance queries. However, the convex hull can just as

easily be used to answer simpler collision queries.

47

The convex hull of a set of n points can be computed in O(n log n) for an 3D

object (Devadoss and O’Rourke, 2011, p. 53). Therefore, collision checking a path

segment using this technique takes O(n log n) to construct the convex hull and O(n+

m) to collision check the hull against the environment of m points.

This method is not exact. If the link only translates and does not rotate, the

convex hull is the exact swept volume. If the link does rotate, the convex hull is

an under-approximation of the swept volume. An upper bound on the maximum

distance the convex hull needs to be expanded in order to fully encompass the swept

volume, given in (Schulman et al., 2014), is

errsv =
αθ2

8

where α is the maximum distance on the link from the axis of rotation, and θ is

the amount the link rotated in radians. This distance will be referred to as the

approximation error of the swept volume approximation. This equation gives a

useful bound for the actual collision detection algorithm to use, but more robot-

specific information is needed to make the common value of this bound for robotic

manipulators clear.

While a theoretical analysis of the under-approximation is out of the scope of

this thesis, an intuition can be developed by looking at the worst-case approxima-

tion error for a manipulator. The worst-case error of swept volume approximation

depends on two different variables. The first is θv, or the longest valid segment in

the configuration space. Motions shorter than this value are considered feasible if

the end points of the motion are valid. The second variable is L, or the furthest

distance from the end effector of the robot to an axis of rotation, i.e. a base joint

of the robot that rotates the entire arm. Usually, this value is the distance of the

robot’s end effector from the robot’s base when at maximum extent. Given these

48

Figure 5.2: A plot of the worst-case errors between discrete collision checking and swept volume
approximation at different resolutions of the configuration space.

variables, the worst-case error of swept volume approximation is

errsv =
Lθ2v
8

This error can be compared to the worst-case error for discrete collision checking.

Discrete collision checking requires one more variable, weef , which is the width of

the robot’s end effector. The worst-case error of discrete collision checking is

errdis = max{Lθv − weef , 0}

Figure 5.2 contains a plot of this worst-case error for both swept volume approx-

imation and discrete collision checking for different widths of the end effector.

49

(a) (b)

Figure 5.3: The planning scene used for the benchmark to get the results in Figures 5.4 and 5.5.
(5.3a) The starting position of the WAM robot. (5.3b) The goal position of the WAM robot.

5.3.2 Results

There are two aspects that are in conflict in approximate collision checking methods:

speed and correctness. Speed is always an important factor in interactive situations

like motion planning, and both discrete collision checking and swept volume approx-

imations have errors. To analyze the tradeoffs between these aspects, both discrete

collision checking and swept volume approximation are used by a sampling-base

planner (RRT-Connect) to solve a mildly difficult planning problem, shown in Fig-

ure 5.3. Discrete collision detection only checks the endpoints of motions that are

shorter than this valid segment length, and swept volume approximation splits a

motion into several straight line segments that are all shorter than the maximum

valid segment length and checks these segments individually. The maximum valid

segment length is varied along the x-axis for both detection methods. The robot

used in the scene is the Barrett WAM 7 DOF arm, which is also used in Chapter 4.

The two results of this benchmark are shown in Figure 5.4 and Figure 5.5.

As Figure 5.4 shows, there is not much additional time spent computing the

50

Figure 5.4: A plot of the correlation between the maximum length motion considered valid and
the planning time of RRT-Connect.

Figure 5.5: A plot of the correlation between the maximum length motion considered valid and
error rate of found solutions (if the collision detector used reported a feasible path that is not
actually feasible). The planner used was RRT-Connect.

51

convex hull compared to multiple discrete collision checks. In Figure 5.5, after a

certain point, the error rate of discrete collision checking increases dramatically,

while the error rate of swept volume approximation stays relatively similar. This

plot closely resembles the worst-case error in Figure 5.2.

An important detail is that the robot used in this experiment has a relatively

large end effector. As can be seen in Figure 5.2, larger end effectors have a smaller

error when using discrete collision checking. Since there is no single thin portion on

these manipulators, the overall error from discrete collision checking on the WAM

is less than other robots.

5.4 Discussion

Not surprisingly, the special collision detection methods introduced by continuous

optimization methods, spherical approximation and swept volume approximation,

perform well in the situations in which they are designed to perform well. Spherical

approximation excels in distance queries, used heavily by CHOMP and GPMP2,

and swept volume approximation has a much lower error in collision checking be-

tween motions that are far apart, which allows TrajOpt to use fewer waypoints

in its optimization than other methods. The results in this chapter show that if

sampling-based planners want to have similar performance increases in these use

cases, these special collision detection methods can help. For example, using spher-

ical approximation will likely improve the performance of a sampling-base motion

planner optimizing over a cost that maximizes the minimum clearance of the robot

from obstacles. Using swept volume approximation can allow planners to increase

the longest valid motion length to reduce collision checking time without sacrificing

as much correctness.

Future work includes a better integration of distance queries in sampling-based

planning, which could improve the performance of methods like (Amato et al., 1998).

In addition, the possibility of inflating collision objects to further reduce the error

52

rate is not considered in this thesis. This inflation, while reducing the approximation

error, would introduce the problem of over-approximation, which spherical approx-

imation also has. An analysis into the trade-offs of under- and over-approximation

might result in a way to choose a reasonable amount of inflation given a particular

planning scene.

53

Chapter 6

Conclusion

This thesis analyzes the performance of sampling-based planners, continuous opti-

mization methods, and a pipeline comprised of both. When problems are solvable

by continuous optimization methods given a straight-line initialization, optimiza-

tion methods are either the same speed or up to nine times as fast compared to

sampling-based methods, depending on the problem. In several cases however, con-

tinuous optimization methods are unable to find feasible solutions. By seeding con-

tinuous optimization methods with a path produced by a sampling-based planner

and path simplification, more problems are solvable and result in similar costs. By

running continuous optimization methods in parallel with different seed generators

(straight-line, random initialization, sampling-based planners path, etc), the result-

ing path planning pipeline is capable of producing high-quality plans very efficiently,

a similar integration to (Srinivasa et al., 2017).

This work highlights the need for a unified platform on which both optimization

methods and sampling based methods both have high performance. The results

shown are possible in simulation, but the combination of the MoveIt! and Open-

RAVE frameworks used is not practical to many users. If the benefits of combining

sampling-based planners and continuous optimization methods are to be widely ac-

cessible, existing planning frameworks need to incorporate both approaches.

For future work, since continuous optimization methods are not able to find

entirely feasible plans due to poorly formulated cost functions, there is a need for

better cost functions that more accurately encode feasibility and improved strategies

to escape local minima. ISIMP (Kuntz et al., 2017) defines an optimization method

54

that prioritizes feasibility at each step of the optimization, showing the potential of

this idea.

One of the strengths of continuous optimization methods is that they can opti-

mize an infeasible path and, in some cases, make the path feasible. Being able to

provide paths that are partially infeasible, but still mostly feasible, might shorten

the time necessary for sampling-based planners to produce completely feasible paths,

reducing the time needed overall to find a path. For this thesis, preliminary work

was completed in this area, but the work was not successful in using optimization

to make these partially feasible candidate paths completely feasible. A key observa-

tion is that partial paths that end close to the goal region are not likely to become

feasible after optimization. A metric other than proximity to the goal should be

used to evaluate partial paths, and this metric could be the focus of future work.

The planning pipeline is powerful because of its generality. A facet of the pipeline

that has not been explored in this thesis is the use of multiple candidate paths in

candidate generation and optimization. This idea can be found in the literature,

specifically in the optimization methods of path hybridization (Raveh et al., 2011)

and GPMP-GRAPH (Huang et al., 2017). Using multiple paths could be useful

in finding optimal paths in different homotopy classes, something that continuous

optimization methods currently cannot do easily.

Another future application is a more integrated combination of sampling and

continuous optimization methods. Planners like RABIT* (Choudhury et al., 2016),

Dancing PRM* Kim et al. (2018), and ISIMP (Kuntz et al., 2017) embody this idea.

However, none of these approaches change the sampling-based planner’s behavior,

but rather augment the local planner with optimization. Using optimization metrics

and costs during sampling planning would allow for paths that are easier for contin-

uous optimization methods to optimize over, and more likely to find local optima

and stay feasible.

For the special collision detection methods discussed in Chapter 5, potential fu-

55

ture work is varied. A more rigorous analysis of the two collision detection methods,

specifically their under- and over-approximation error is warranted. As spherical

approximation provides an inexpensive way to answer distance queries about the

scene, a better integration of this information into sampling-based planners could

also improve the performance of methods like (Amato et al., 1998).

56

Appendix A

Culling Sampling-based Planning Results

The fact that simplification of paths from sampling-based planners results in strictly

better costs can be seen in Figure A.1a, where for all forms of optimization, RRT-

Connect and simplification outperform RRT-Connect by itself as a candidate gen-

erator.

The fact that many sampling-based planners produce similar paths after sim-

plification can be seen in Figure A.1b, where the difference in cost between each

of the sampling-based planners is greatly reduced. The costs for KPIECE without

simplification are not shown, as those costs are several magnitudes higher than the

other planners. The costs for planners that consider costs while planning, BIT*,

FMT, RRT*, are slightly lower than the costs for planners that do not, even after

simplification and optimization. This similarity is can also be seen numerically by

calculating the dynamic time warping score Berndt and Clifford (1994), which mea-

sures distance between two paths. The average dynamic time warping between all

combinations of paths found by any two planners gives a general idea of the similar-

ity between groups of paths. Table A.1 shows this average score between any two of

a select number of planners. The data shown is from a single problem in the column

scene. Cells tinted red include a planner not followed by simplification, and cells

tinted green are distances where both planners are followed by simplification. The

scores between paths from different planners followed by simplification very low,

even when compared to the distances between paths from the same planner without

simplification. These scores mean the resulting paths from different planners fol-

lowed by simplification are similar enough, and the choice of which sampling-based

57

Table A.1: Average Dynamic Time Warping Score of Between Paths from Sampling
Planners

Planner RRTCnt BIT* RRTCnt-Simp BIT*-Simp KPIECE-Simp
RRTCnt 2.0713 1.8212 1.6796 1.6994 1.5508
BIT* 1.8212 1.5600 1.3824 1.2782 1.1925
RRTCnt Simp 1.6796 1.3824 1.1759 1.0650 0.9261
BIT* Simp 1.6994 1.2782 1.0650 0.8333 1.1925
BKPIECE Simp 1.5508 1.1925 0.9261 1.1925 0.5731

(a) (b)

Figure A.1: (A.1a) The comparative costs of a plan with and without intermediate simplification.
The scene is the shelf scene. (A.1b) The Costs of several different sampling-based planners with
and without intermediate simplification. The scene is the shelf scene.

planner to use is answered by which planner finds a solution quickly on your given

problem. BIT* and other planers that consider cost while planning do find slightly

more optimal paths after optimization, but the differences among the cost planners

and the feasible planners is still negligible.

58

Bibliography

Nancy M. Amato, O. Burchan Bayazit, Lucia K. Dale, Christopher Jones, and

Daniel Vallejo. Obprm: An obstacle-based prm for 3d workspaces. In Proceedings

of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics :

The Algorithmic Perspective, WAFR, pages 155–168, Natick, MA, USA, 1998. A.

K. Peters, Ltd. ISBN 1-56881-081-4.

Sean Anderson, Timothy D. Barfoot, Chi Hay Tong, and Simo Särkkä. Batch

nonlinear continuous-time trajectory estimation as exactly sparse gaussian process

regression. Autonomous Robots, 39(3):221–238, Oct 2015. ISSN 1573-7527. doi:

10.1007/s10514-015-9455-y.

Oktay Arslan and Panagiotis Tsiotras. The role of vertex consistency in sampling-

based algorithms for optimal motion planning. arXiv:1204.6453 [cs], April 2012.

URL http://arxiv.org/abs/1204.6453.

Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns

in time series. In Proceedings of the 3rd International Conference on Knowledge

Discovery and Data Mining, AAAIWS, pages 359–370. AAAI Press, 1994.

Arunkumar Byravan, Byron Boots, Siddhartha S. Srinivasa, and Dieter Fox. Space-

time functional gradient optimization for motion planning. In Proceedings of

IEEE Conference on Robotics and Automation, pages 6499–6506, May 2014. doi:

10.1109/ICRA.2014.6907818.

John Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,

MA, 1987.

http://arxiv.org/abs/1204.6453

59

Peng Cheng, George Pappas, and Vijay Kumar. Decidability of motion planning

with differential constraints. In Proceedings 2007 IEEE International Conference

on Robotics and Automation, pages 1826–1831, April 2007. doi: 10.1109/ROBOT.

2007.363587.

Sanjiban Choudhury, Jonathan Gammell, Timothy Barfoot, Siddhartha Srinivasa,

and Sebastian Scherer. Regionally accelerated batch informed trees (RABIT*): A

framework to integrate local information into optimal path planning. In Proceed-

ings of IEEE Conference on Robotics and Automation, pages 4207–4214, 2016.

Erwin Coumanns. Bullet physics library. http://www.bulletphysics.org, 2012.

Frank Dellaert and Michael Kaess. Square Root SAM: Simultaneous Localization

and Mapping via square root information smoothing. International Journal of

Robotics Research, 25(12):1181–1203, 2006.

Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geometry.

Princeton University Press, 2011.

Rosen Diankov and James Kuffner. OpenRAVE: A planning architecture for au-

tonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-

08-34, page 79, 2008.

Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic motion

planning. Journal of the ACM, 40(5):1048–1066, November 1993. ISSN 0004-5411.

doi: 10.1145/174147.174150.

Christer Ericson. Real-Time Collision Detection. CRC Press, Inc., Boca Raton, FL,

USA, 2004. ISBN 1558607323, 9781558607323.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance transforms of sampled

functions. Theory of computing, 8(1):415–428, 2012.

http://www.bulletphysics.org

60

Jonathan Gammell. Informed Anytime Search for Continuous Planning Problems.

PhD thesis, University of Toronto, Toronto, Canada, 2016.

Roland Geraerts and Mark H. Overmars. Creating high-quality paths for motion

planning. The International Journal of Robotics Research, 26(8):845–863, August

2007. ISSN 0278-3649. doi: 10.1177/0278364907079280.

Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya Keerthi. A fast procedure

for computing the distance between complex objects in three-dimensional space.

IEEE Journal on Robotics and Automation, 4(2):193–203, April 1988. ISSN 0882-

4967. doi: 10.1109/56.2083.

Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha. OBBTree: a hierarchical

structure for rapid interference detection. pages 171–180. ACM Press, 1996. ISBN

978-0-89791-746-9. doi: 10.1145/237170.237244.

GTRLL. GPMP2: Gaussian Process Motion Planner 2. https://github.com/

gtrll/gpmp2, 2016a. Accessed 2018-05-15.

GTRLL. OR GPMP2: OpenRAVE plugin for GPMP2. https://github.com/

gtrll/orgpmp2, 2016b. Accessed 2018-05-15.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, July 1968. ISSN 0536-1567. doi: 10.1109/TSSC.

1968.300136.

David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in ex-

pansive configuration spaces. In Proceedings of IEEE International Confer-

ence on Robotics and Automation, pages 2719–2726 vol.3, Apr 1997. doi:

10.1109/ROBOT.1997.619371.

https://github.com/gtrll/gpmp2
https://github.com/gtrll/gpmp2
https://github.com/gtrll/orgpmp2
https://github.com/gtrll/orgpmp2

61

Eric Huang, Mustafa Mukadam, Zhen Liu, and Byron Boots. Motion planning with

graph-based trajectories and gaussian process inference. In 2017 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 5591–5598, May

2017. doi: 10.1109/ICRA.2017.7989659.

Philip M. Hubbard. Approximating polyhedra with spheres for time-critical colli-

sion detection. ACM Transactions on Graphics, 15(3):179–210, July 1996. ISSN

07300301. doi: 10.1145/231731.231732.

Léonard Jaillet, Juan Cortés, and Thierry Siméon. Sampling-based path planning

on configuration-space costmaps. IEEE Transactions on Robotics, 26(4):635–646,

Aug 2010. ISSN 1552-3098. doi: 10.1109/TRO.2010.2049527.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching

tree: A fast marching sampling-based method for optimal motion planning in

many dimensions. The International Journal of Robotics Research, 34(7):883–

921, 2015. doi: 10.1177/0278364915577958.

Nikolay Jetchev and Marc Toussaint. Fast motion planning from experience: tra-

jectory prediction for speeding up movement generation. Autonomous Robots, 34

(1):111–127, Jan 2013. ISSN 1573-7527. doi: 10.1007/s10514-012-9315-y.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan

Schaal. STOMP: Stochastic trajectory optimization for motion planning. In

Proceedings IEEE Conference on Robotics and Automation, pages 4569–4574, May

2011. doi: 10.1109/ICRA.2011.5980280.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

doi: 10.1177/0278364911406761.

62

Lydia E. Kavraki, Petr Svestka, J.-C. Latombe, and Mark H. Overmars. Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces. IEEE

Transactions on Robotics and Automation, 12(4):566–580, 1996.

Khatib, Oussama. Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots. IJRR, 2:500–505, 1985.

Donghyuk Kim, Youngsun Kwon, and Sung-Eui Yoon. Dancing PRM*: Simulta-

neous planning of sampling and optimization with configuration free space ap-

proximation. In Proceedings of IEEE Conference on Robotics and Automation,

2018.

Young J. Kim, Ming C. Lin, and Dinesh Manocha. Deep: dual-space expan-

sion for estimating penetration depth between convex polytopes. In Proceed-

ings 2002 IEEE International Conference on Robotics and Automation (Cat.

No.02CH37292), volume 1, pages 921–926 vol.1, May 2002. doi: 10.1109/ROBOT.

2002.1013474.

Michal Kleinbort, Oren Salzman, and Dan Halperin. Collision detection or nearest-

neighbor search? On the computational bottleneck in sampling-based motion

planning. arXiv preprint arXiv:1607.04800, 2016. URL https://arxiv.org/

abs/1607.04800.

James J. Kuffner and Steven M. LaValle. RRT-connect: An efficient approach to

single-query path planning. In Proceedings of IEEE Conference on Robotics and

Automation, pages 995–1001, 2000.

Alan Kuntz, Chris Bowen, and Ron Alterovitz. Fast anytime motion planning

in point clouds by Interleaving Sampling and Interior Point Optimization. In

International Symposium on Robotics Research. ISRR, December 2017.

https://arxiv.org/abs/1607.04800
https://arxiv.org/abs/1607.04800

63

Jean-Paul Laumond, Nicolas Mansard, and Jean-Bernard Lasserre. Optimality in

robot motion: Optimal versus optimized motion. Commun. ACM, 57(9):82–89,

September 2014. ISSN 0001-0782. doi: 10.1145/2629535.

Steven M. LaValle. Planning Algorithms, pages 707–709. Cambridge University

Press, New York, NY, USA, 2006. ISBN 0521862051.

Steven M. LaValle and James J. Kuffner. Rapidly-Exploring Random Trees:

Progress and prospects. In Proceedings of the The Fourth International Work-

shop on Algorithmic Foundations of Robotics on New Directions in Algorithmic

and Computational Robotics, WAFR, pages 293–308. A. K. Peters, Ltd., 2001.

Lening Li, Xianchao Long, and Michael A. Gennert. BiRRTOpt: A combined

sampling and optimizing motion planner for humanoid robots. In 2016 IEEE-

RAS 16th International Conference on Humanoid Robots (Humanoids), pages

469–476, November 2016. doi: 10.1109/HUMANOIDS.2016.7803317.

Ming C. Lin and John F. Canny. A fast algorithm for incremental distance calcu-

lation. In Proceedings. 1991 IEEE International Conference on Robotics and Au-

tomation, pages 1008–1014 vol.2, April 1991. doi: 10.1109/ROBOT.1991.131723.

Ryan Luna, Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. Anytime solu-

tion optimization for sampling-based motion planning. In Proceedings of IEEE

Conference on Robotics and Automation, pages 5053–5059, Karlsruhe, Germany,

06/05/2013 2013. doi: 10.1109/ICRA.2013.6631301.

Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and

Control. Cambridge University Press, 2017. ISBN 9781316609842.

Jim Mainprice, E. Akin Sisbot, Léonard Jaillet, Juan Cortés, Rachid Alami, and

Thierry Siméon. Planning human-aware motions using a sampling-based costmap

64

planner. In Proceedings of IEEE Conference on Robotics and Automation, pages

5012–5017, 2011.

Zita Marinho, Byron Boots, Anca Dragan, Arunkumar Byravan, Geoffrey J. Gordon,

and Siddhartha Srinivasa. Functional gradient motion planning in reproducing

kernel hilbert spaces. In Proceedings of Robotics: Science and Systems, Ann

Arbor, Michigan, June 2016. doi: 10.15607/RSS.2016.XII.046.

Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots.

Continuous-time Gaussian Process Motion Planning via probabilistic inference.

arXiv:1707.07383 [cs], July 2017. URL http://arxiv.org/abs/1707.07383.

arXiv: 1707.07383.

Radford M. Neal. MCMC using Hamiltonian dynamics. In Steve Brooks, Andrew

Gelman, Galin Jones, and Xiao-Li Meng, editors, Handbook of Markov Chain

Monte Carlo, chapter 5. CRC Press, New York, NY, 2011.

Oren Nechushtan, Barak Raveh, and Dan Halperin. Sampling-diagram automata:

A tool for analyzing path quality in tree planners. In Algorithmic Foundations of

Robotics IX, pages 285–301. Springer, 2010.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization, pages 64–99.

Springer-Verlag, New York, NY, USA, 1999. ISBN 0-387-98793-2.

Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library

for collision and proximity queries. pages 3859–3866. IEEE, May 2012. ISBN

978-1-4673-1405-3 978-1-4673-1403-9 978-1-4673-1578-4 978-1-4673-1404-6. doi:

10.1109/ICRA.2012.6225337.

Personal Robotics Lab. OR CDCHOMP: OpenRAVE plugin that implements

the CHOMP trajectory optimizer. https://github.com/personalrobotics/

or_cdchomp, 2013. Accessed 2018-05-15.

http://arxiv.org/abs/1707.07383
https://github.com/personalrobotics/or_cdchomp
https://github.com/personalrobotics/or_cdchomp

65

Barak Raveh, Angela Enosh, and Dan Halperin. A little more, a lot better: Improv-

ing path quality by a path-merging algorithm. IEEE Transactions on Robotics,

27(2):365–371, April 2011. ISSN 1552-3098. doi: 10.1109/TRO.2010.2098622.

Stephane Redon, Ming C. Lin, Dinesh Manocha, and Young J. Kim. Fast Con-

tinuous Collision Detection for Articulated Models. Journal of Computing and

Information Science in Engineering, 5(2):126, 2005. ISSN 15309827. doi:

10.1115/1.1884133.

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow,

Jia Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. Motion planning with

sequential convex optimization and convex collision checking. The International

Journal of Robotics Research, 33(9):1251–1270, August 2014. ISSN 0278-3649,

1741-3176. doi: 10.1177/0278364914528132.

John Schulmann. TrajOpt: Trajectory optimization. https://github.com/

joschu/trajopt, 2013. Accessed 2018-05-15.

Jacob T. Schwartz and Micha Sharir. On the piano movers problem. II. General

techniques for computing topological properties of real algebraic manifolds. Ad-

vances in applied Mathematics, 4(3):298–351, 1983.

Siddhartha Srinivasa, Aaron M. Johnson, Gilwoo Lee, Michael C. Koval, Shushman

Choudhury, Jennifer E. King, Christopher M. Dellin, Matthew Harding, David T.

Butterworth, Prasanna Velagapudi, and Allison Thackston. A system for multi-

step mobile manipulation: Architecture, algorithms, and experiments. In Dana

Kulić, Yoshihiko Nakamura, Oussama Khatib, and Gentiane Venture, editors,

2016 International Symposium on Experimental Robotics, pages 254–265, Cham,

2017. Springer International Publishing. ISBN 978-3-319-50115-4.

Ioan A. Şucan and Sachin Chitta. Moveit! http://moveit.ros.org/, 2012.

https://github.com/joschu/trajopt
https://github.com/joschu/trajopt
http://moveit.ros.org/

66

Ioan A. Şucan and L. E. Kavraki. A sampling-based tree planner for systems with

complex dynamics. IEEE Transactions on Robotics, 28(1):116–131, February

2012. ISSN 1552-3098. doi: 10.1109/TRO.2011.2160466.

Ioan A. Şucan, Mrinal Kalakrishnan, and Sachin Chitta. Combining planning

techniques for manipulation using realtime perception. In 2010 IEEE Interna-

tional Conference on Robotics and Automation, pages 2895–2901, May 2010. doi:

10.1109/ROBOT.2010.5509702.

Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning

Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012.

doi: 10.1109/MRA.2012.2205651. http://ompl.kavrakilab.org.

Gino van den Bergen. Proximity queries and penetration depth com- putation on

3d game objects. In Game Developers Conference, 2001.

Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klin-

gensmith, Christopher M. Dellin, J. Andrew Bagnell, and Siddhartha Srinivasa.

CHOMP: Covariant Hamiltonian Optimization for Motion Planning. The Inter-

national Journal of Robotics Research, 32(9-10):1164–1193, August 2013. ISSN

0278-3649, 1741-3176. doi: 10.1177/0278364913488805.

http://ompl.kavrakilab.org

	Abstract
	Acknowledgments
	Contents
	Introduction
	The Importance of Robotics
	Motion Planning and Path Planning
	High Dimensional Path Planning

	Contribution
	Organization

	Literature Review
	Robotic Motion
	Configurations and the C-Space
	The Path Planning Problem
	Cost and the Optimal Path Planning Problem

	Sampling-based Motion Planners
	Feasible Planners
	Cost-aware Planners

	Continuous Optimization Methods
	CHOMP
	STOMP
	TrajOpt
	GPMP2
	Review

	Combinations of Sampling and Optimization
	Bottom-up: Using optimization as a local planner
	Top-down: Using optimization as a post-processor

	Discussion

	The Planning Pipeline: Methods
	Candidate Generators
	Candidate Optimizers
	Discussion

	The Planning Pipeline: Results
	Experiments and Implementation
	Results and Analysis
	Discussion

	Collision Detectors from Optimization Methods
	Collision Detection Background
	Spherical Robot Approximations and Signed Distance Fields
	The Method
	Results

	Swept Volume Approximation via Convex Hulls
	The Method
	Results

	Discussion

	Conclusion
	Appendix
	Culling Sampling-based Planning Results

